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a b s t r a c t

This works addresses the problem of reconstructing multi-echo T2 weighted MR images from partially
sampled K-space data. Previous studies in reconstructing MR images from partial samples of the K-space
used Compressed Sensing (CS) techniques to exploit the spatial correlation of the images (leading to spar-
sity in transform domain). Such techniques can be employed to reconstruct the individual T2 weighted
images. However, in the current context, the different images are not independent; they are images of
the same cross section, and hence are highly correlated. In this work, we not only exploit the spatial cor-
relation within the image, but also the correlation between the images to achieve even better reconstruc-
tion results.

For individual MR images, CS based techniques lead to a sparsity promoting optimization problem in a
transform domain. In this paper, we show how to extend the same framework in order to incorporate cor-
relation between images leading to group sparsity promoting optimization. Group sparsity promoting
optimization is popularly formulated as a synthesis prior problem. The synthesis prior formulation for
group sparsity leads to superior reconstruction results compared to ordinary sparse reconstruction. How-
ever, in this paper we show that when group sparsity is framed as an analysis prior problem the recon-
struction results are even better for proper choice of the sparsifying transform.

An interesting observation of this work is that when the same sampling pattern is used to sample the K-
space for all the T2 weighted echoes, group sparsity does not yield any noticeable improvement, but
when different sampling patterns are used for different echoes, our proposed group sparsity promoting
formulation yields significant improvement (in terms of Normalized Mean Squared Error) over previous
CS based techniques.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In T2 weighted Magnetic Resonance Imaging (MRI), multiple
echoes of the same anatomical slice with varying echo times are
acquired. The objective is to reconstruct the multi-echo T2
weighted MR images. Generally this kind of data is acquired for
computing T2 maps.

In conventional MR imaging the echoes are acquired by fully
sampling the K-space on a rectangular grid and applying 2D in-
verse Fast Fourier Transform to reconstruct the image. Such con-
ventional K-space sampling methods become prohibitively slow
for practical multi-echo T2 weighted MR imaging, e.g. acquiring
32 echoes of a while imaging a single slice of the rat’s spinal cord
using Carr Purcell Meiboom Gill (CPMG) sequence takes about
ll rights reserved.
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40 min. In this paper, we look how to reduce this data acquisition
time for such multi-echo T2 weighted MRI.

For single 2D MR images the scan time can be reduced by ran-
domly acquiring only a subset of all the K-space lines in frequency
encoding direction. The images from such partially sampled K-
space data can be reconstructed by using Compressed Sensing
(CS) based techniques [1,2]. CS techniques utilize spatial correla-
tion (leading to sparsity of the image in a transform domain) in
the MR image in order to reconstruct it.

Such a CS technique can be directly applied to each of the ech-
oes of the multiple T2 weighted images. However, this is not the
best possible approach. The multiple T2 weighted images are cor-
related with each other. In this work, we propose to exploit both
intra-image spatial correlation as well as inter-image correlation
to achieve even better reconstruction. This too will be a CS based
formulation, but instead of reconstructing each image individually,
we will jointly reconstruct all the T2 weighted images simulta-
neously. Our formulation to the joint reconstruction problem will
lead to group-sparse optimization. The improvement in recon-
struction is not achieved when a fixed K-space sampling pattern
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is used for all the echoes, but is achieved when different sampling
patterns are used for each echo.

In recent times there have been several attempts to improve
computation of T2 maps. In [3], the goal was to find an empirical
dictionary that would be better at sparsifying the MR images than
the mathematical ones like wavelets, curvelets or contourlets. They
applied this learned dictionary technique for computing the T2
map. In [4], the problem was to compute T2 maps from radial K-
space scans. The focus of this work is different from both of these.
We use a standard wavelet dictionary for the sparsifying trans-
form. Instead of using radial scanning, we employ Cartesian scans.
Acceleration is achieved by randomly omitting scan lines along the
y-axis.

The main goal of this work is to accelerate the MRI scan by par-
tially sampling the K-space. Creating the T2 maps from the MR
images is a non-linear operation. However, it is fair to assume that
if the MR images can be reconstructed fairly accurately from the
partial K-space scans, the T2 map obtained from these images will
be close to the ones corresponding to full K-space scans. This work
shows that the assumption is valid and the T2 maps generated
from these MR images (from partial K-space scans) are fairly accu-
rate (compared to the T2 map generated from the full K-space).

This work discusses the joint reconstruction problem in the
context of multi-echo T2 weighted MR imaging. However the tech-
niques developed in this paper are applicable to T1 weighted MR
imaging as well. The rest of the paper is organized into several sec-
tions. The theoretical development behind the group-sparse opti-
mization is described in the following section. The experimental
results are in Section 3. The conclusions of this work are discussed
in Section 4.
2. Reconstruction of T2 weighted images

Contrast between various tissues in the MR image is dependent
on the T2 weighting, i.e. for a particular T2 weighting the contrast
between two tissues A and B may be high, while for another T2
weighting the contrast may be low. In multi-echo T2 weighted
imaging each image varies from the other in their contrast be-
tween the tissues. Since all the T2 weighted images actual corre-
spond to the same cross section, they are highly correlated
amongst themselves.

In this section, first we will discuss the theory behind the recon-
struction of single 2D MR images from partially sampled K-space
data. CS techniques exploit the spatial correlation within the MR
images in order to reconstruct them from reduced number of K-
space samples. Later we will show how to exploit the correlation
between the images along with spatial correlation to achieve bet-
ter reconstruction of multi-echo T2 weighted MR images.

2.1. Reconstructing single MR images

The partially sampled K-space data acquisition model for the
underlying image can be expressed as,

ym�1 ¼ Rm�N2 FN2�N2 xN2�1 þ gm�1; m 6 N2 ð1Þ

where y is the acquired K-space samples, x is the underlying image
in vectorized form, F is the Fourier transform, R is the restriction
operator (mask) that chooses the sampling positions and g is white
Gaussian noise.

The inverse problem (1) is under-determined and hence does
not have a unique solution. To reconstruct the underlying image,
some prior information regarding it is necessary. Many Com-
pressed Sensing based MR reconstruction techniques [1,2,5,6] as-
sume that the image to be reconstructed is approximately sparse
in some transform domain (wavelet, contourlet, finite difference).
In this work, we are mainly interested in wavelets as the sparsify-
ing transform.

The wavelet analysis and synthesis equations are:

Analysis : a ¼Wx ð2aÞ

Synthesis : x ¼WTa ð2bÞ

The wavelet coefficients in a are approximately s-sparse, i.e. only s
coefficients are non-zeroes while the rest are zeroes or very close to
zero. Typically, for MR images, around 5–10% of the coefficients
have significant values. We are interested in those wavelet families
that are either orthogonal (WT W ¼ I ¼WWT ), in that case the
dimensionality of the original image and the transform coefficients
is the same, or are redundant (tight-frames: WT W ¼ I–WWT ), in
that case the dimensionality of the wavelet coefficients is larger.

Incorporating the wavelet coefficients into (1),

y ¼ RFWTaþ g ð3Þ

In Compressed Sensing (CS), instead of solving the image directly
the wavelet coefficient of the image is solved from (3). CS aims at
recovering only the s high valued wavelet coefficients. The coeffi-
cients that are close to zero are indistinguishable from noise and
hence can not be recovered.

In the pixel domain, an N � N image under consideration has N2

unknowns. However the pixel values are highly correlated locally.
The wavelet transform effectively ‘whitens’ the image by removing
the spatial correlations [7]. This leaves s nearly independent high
valued wavelet coefficients.

The inverse problem (10) has effectively only 2s unknowns – s
positions and s values. Intuitively, solving for these 2s unknowns
will require far less number of equations than solving for the image
directly which has N2 unknowns. CS based recovery algorithms
solves for the sparse wavelet transform coefficients by solving
the following optimization problem,

min
a
kak1 subject to ky� RFWTak2 6 r ð4Þ

where r is proportional to the standard deviation of noise, k:k1 is
the sum of absolute values of the coefficients in the vector and
k:k2 is the square root of the sum of squared values of the coeffi-
cients in the vector.

Now in order to get a reasonably good estimate of the signal via
l1-minimization, the number of K-space samples needed is [8],

m ¼ O slog
N2

s

 !
ð5Þ

Once the wavelet coefficients are recovered, the image is recon-
structed by applying the wavelet synthesis Eq. (2b).

2.2. Group-sparse reconstruction of T2 weighted images

As mentioned earlier, in T2 weighted imaging one acquires mul-
tiple images of the same cross section by varying the echo time. As-
sume, K-space data for T such weightings have been acquired. This
is represented by,

yi ¼ RiFxi þ gi; i ¼ 1; . . . ; T ð6Þ

where Ri represents that we can have a different sampling pattern
for each T2 weighting.

The problem is to reconstruct the T2 weighted images (xi’s) gi-
ven their K-space samples (yi’s).

A straightforward application of CS will repeatedly apply (4) to
reconstruct the T2 weighted individually (for each i). In this work,
we aim at joint reconstruction of all the T2 weighted images. How-
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ever, such a formulation does not account for inter-image correla-
tion. To reconstruct the images simultaneously using both intra-
image spatial correlation as well as inter-image correlation in or-
der to improve reconstruction accuracy we propose this work.

Incorporating the wavelet transform, (6) can be expressed con-
cisely as follows,

y1

� � �
yT

2
64

3
75 ¼ R1FWT 0 0

0 � � � 0
0 0 RT FWT

2
64

3
75

a1

� � �
aT

2
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75þ
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2
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The wavelet transform effectively encodes the edges in an im-
age. When the edge is more pronounced the wavelet coefficients
are high. When the edge is not so sharp, the wavelet coefficients
are low. In smooth areas the wavelet coefficients are zero. The fol-
lowing toy example illustrates the fact.

Consider a small image matrix with sharp boundary for a partic-
ular T2 weighting (Fig. 1a). The 0’s correspond to tissue B and the
1’s correspond to tissue W. The wavelet transform (Fig. 1b.) cap-
tures the vertical discontinuity between W–B. The values in the last
column should be ignored, the wavelet transform assumes that the
signal is periodic and computes the boundary between B and W.

Fig. 1 shows that when the tissue boundary is pronounced, the
wavelet transform along the boundary is high. Now consider a dif-
ferent value of T2 weighting, such that the contrast between W and
B is less pronounced (Fig. 2a). The wavelet transform of this matrix
Fig. 1. First T2 weighting: (a) tissue boundary; (b) wavelet coefficients.

Fig. 2. Second T2 weighting: (a) tissue
is shown in Fig. 2b. We can see now that even though the position
of the high valued transform coefficients is the same, their values
have changed. As the contrast has reduced, the value of the wavelet
coefficients has reduced.

This example is to corroborate the fact that as long as the anat-
omy of the brain slice does not change, the positions of the high
valued wavelet transform coefficients will not change for different
T2 weightings. Mathematically, this means that there should be a
high degree of mutual correlation between the wavelet transforms
of any two T2 weighted images of the same anatomical cross sec-
tion. Fig. 3. shows the scatter plot between the wavelet coefficients
of two randomly chosen T2 weighted images of rat’s spinal cord.
The plot shows that the correlation is almost linear.

The linear relationship, corroborates our physical understand-
ing of the fact that wavelet coefficients of two T2 weighted images
have similar valued coefficients at similar positions.

The wavelet coefficient vector for each image (ai) in (7) corre-
sponding to different T2 weightings are of length N2 (assuming
for the time being the wavelet transform we are considering is
orthogonal). The ~a in (7) can be grouped according to their posi-
tions as shown in Fig. 4. We will have N2 groups (same as the num-
ber of wavelet coefficients for each image) and within each group
there will be T (same as the total number of T2 weightings)
coefficients.

We have argued why the wavelet coefficients should have sim-
ilar values at similar positions. It is known that the wavelet trans-
form leads to a sparse representation of the individual MR images.
If each ai’s are approximately s-sparse, then following the argu-
boundary; (b) wavelet coefficients.

Fig. 3. Scatter plot of wavelet coefficients of two T2 weighted images of rat’s spinal
cord.



Fig. 4. Grouping of wavelet coefficients according to their position.
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ment that different ai’s will have high valued coefficients at similar
positions, we can say that the vector ~a is going to be approximately
s-group sparse, i.e. there are approximately only s groups that have
high valued wavelet coefficients and rest of the groups have zero
coefficients or coefficients close to zero.

Therefore one needs to incorporate group sparsity into the opti-
mization problem. There have been previous studies [9–11] that
proposed the following mixed l2,1-minimization for solving the
group sparsity promoting optimization problem,

min
~a
k~ak2;1 subject to k~y�U~ak2 6 r ð8Þ

where k~ak2;1 ¼
XN2

r¼1

XT

k¼1

a2
k;r

 !1=2

:

The l2-norm
PT

k¼1a2
k;r

� �1=2
over the group of correlated coeffi-

cients enforces the selection of the entire group of coefficients,
whereas the summation over the l2-norm enforces group sparsity,
i.e. the selection of only a few groups. This problem can be solved
with standard packages like Spectral Projected Gradient L1 [15].
Although group-sparse optimization is being introduced for the
first time in MR image reconstruction, it has been used (with
slightly different measures on group sparsity) previously in color
imaging [12–14].

2.3. Benefit of group-sparse reconstruction

In the problem of reconstruction of T2 weighted images by
sparse optimization, l1-minimization is employed. It is assumed
that each of the T2 weighted images is approximately s-sparse;
and there are T such weighted images; therefore the full vector
consisting of wavelet coefficients from all images~a is approxi-
mately T s-sparse. Application of l1-minimization requires about
M1 ¼ O Ts log N2

s

� �
K-space samples.

However, we have argued that ~a is actually s-group sparse.
Compared to simple sparsity promoting optimization (l1-minimi-
zation) we are exploiting more structure (the knowledge that the
vector is sparse in groups). This information benefits reconstruc-
tion in the sense that in order to retrieve the same number of coef-
ficients by l2,1-minimization (8) the number of measurements
required is only M2;1 ¼ O Tsþ s log N2

s

� �
[16]. This is significantly

less than the number of measurements required by simple sparsity
based optimization.

Thus we expect to achieve the same level of reconstruction
accuracy, but with lesser number of K-space samples when by
our proposed group/row sparsity based reconstruction of T2 maps
compared to simple sparsity based optimization. Or in other
words, with the same number of K-space samples group sparsity
based methods will yield better reconstruction results.

2.4. Group-sparse analysis prior formulation

The formulation in (8) is called the ‘synthesis prior’ formulation
since it solves for the wavelet transform coefficients. Alternately
we can formulate it as an ‘analysis prior’ formulation, where one
can directly solve for the images. Instead of (7), we can express
the combined data acquisition model for all the T2 weighted
images as follows:
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Instead of employing a synthesis prior optimization as in (8), we
propose the following group sparsity promoting analysis prior
optimization:

min
~x
kH~xk2;1 subject to k~y�W~xk2 6 r ð10Þ
where H ¼
W 0 0
0 � � � 0
0 0 W

2
64

3
75

The synthesis prior (16) and the analysis prior (17) formulations
are the same for orthogonal wavelets ðWT W ¼ I ¼WWTÞ, but not
for redundant wavelets WT W ¼ I–WWT . The synthesis prior for-
mulation is more popular in signal processing and machine learn-
ing. However, in a recent work [15], the following observations
have been noted regarding analysis and synthesis prior reconstruc-
tion for sparse (not group-sparse) signals:

� For orthogonal wavelets both analysis and synthesis prior yield
the same results (theoretically).
� Redundant wavelets with synthesis prior the results are worse

than orthogonal wavelets.
� Redundant wavelets with analysis prior yield the best results.

In [17], the results were concluded for synthetic signals. We
experimentally showed that similar conclusions can be drawn for
sparsity based MR image reconstruction [18]. Following our previ-
ous work [18], instead of employing synthesis prior optimization
we propose employing analysis prior group-sparse optimization
to achieve even better reconstruction results. Unfortunately, there
is no algorithm available for solving this problem (10).
3. Experimental results

The experimental evaluation was carried out on ex-vivo and in-
vivo T2 weighted images of a rat’s spinal cord. The data were col-
lected with a 7T MRI scanner. The original ground-truth data con-
sisted of a series of 16 fully-sampled echoes acquired with a CPMG
sequence with increasing echo time (first echo was acquired with
13.476 ms echo time, and consecutive echoes with the echo spac-
ing of 13.476 ms).

In this work, we simulate partial sampling of the K-space by
randomly omitting lines in the frequency encoding direction. Three
sampling patterns for 32, 48 and 64 lines in the read-out direction
are shown below. They correspond to sampling ratios 12.5%,
18.75% and 25% of the full K-space. For all the sampling patterns,
a third of the total sampling lines are used to densely sample the
center of the K-space.

For reconstruction of individual T2 weighted images, different
CS optimization can be used. One can apply (4) [2], or else one
can apply Total Variation (TV) minimization [19]. However, the
best results are obtained when both wavelet transform and TV is
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combined to reconstruct the image via the following optimization
[1,20].

min
a
kak1 þ TVðWTaÞ subject to ky� RFWTak2 6 r ð11Þ

This problem (11) is solved via the algorithm outlined in [21]. For
the group-sparse synthesis prior optimization we employ the SPGL1
algorithm [15]. Algorithm for group-sparse analysis prior did not
exist previously and hence we developed it in this work. The algo-
rithm derived in the appendix will used for the purpose.

We will show that better results can be obtained by jointly
reconstructing all the T2 weighted images. The joint reconstruction
exploits group sparsity as outlined in this paper. We show the re-
sults for both synthesis prior with orthogonal wavelets and analy-
sis prior with redundant wavelets. As we mentioned earlier, both
the synthesis prior and the analysis prior are theoretically the same
for orthogonal wavelets, hence we provide results for only synthe-
sis prior. The results for synthesis prior with redundant wavelets
are worse compared to the others, therefore we do not show these
results as well. Unless otherwise mentioned in this work ‘Group-
sparse synthesis’ employs orthogonal wavelets and ‘Group-sparse
analysis’ employs redundant wavelets.

3.1. Quantitative evaluation

In this work, we experimented with several wavelet families
(Haar, Daubechies, Coiflets, Symlets and Fractional Spline) as the
Table 1
NMSE for ex-vivo reconstructed images.

Reconstruction method Same sampling for all weighting

32 48 64

SparseMRI [1,21] 0.2703 0.2063 0.1
Group-sparse synthesis 0.2573 0.1923 0.1
Group-sparse analysis 0.2262 0.1659 0.1

Table 2
NMSE for in-vivo reconstructed images.

Reconstruction method Same sampling for all weighting

32 48 64

SparseMRI [1,21] 0.3775 0.1961 0.1
Group-sparse synthesis 0.3622 0.1952 0.1
Group-sparse analysis 0.3176 0.1708 0.1

Table 3
NMSE for ex-vivo T2 maps.

Reconstruction method Same sampling for all weighting

32 48 64

SparseMRI [1,21] 0.2777 0.2339 21
Group-sparse synthesis 0.2732 0.2086 0.1
Group-sparse analysis 0.2642 0.1934 0.1

Table 4
NMSE for in-vivo T2 maps.

Reconstruction method Same sampling for all weighting

32 48 64

SparseMRI [1,21] 0.4295 0.2325 0.1
Group-sparse synthesis 0.4212 0.2039 0.1
Group-sparse analysis 0.3754 0.1792 0.1
sparsifying transform. The best results were obtained by Daube-
chies 6 wavelets at three levels of decomposition. In this work,
we therefore report the results for this wavelet. The metric for
quantitative comparison is the Normalized Mean Squared Error
(NMSE) between the ground-truth and the reconstructed 16
images. Later, the difference image (between original and
reconstructed) is provided for qualitative evaluation. In the
following tables, ‘Same sampling for all weighting’ indicates that
the same sampling pattern has been used for all the T2 weighted
echoes where as ‘Different sampling for each weighting’ indicates
that for each echo a different random sampling pattern has been
used.

The following conclusions can be drawn from Tables 1 and 2:

� When the same sampling pattern is used for all the echoes,
group sparsity promoting optimization does not yield any sig-
nificant improvement over previously proposed technique
[1,21]. But when different sampling patterns are used, the
results from group-sparse optimization show significant
improvement.
� The analysis prior optimization always yields significantly bet-

ter results than the synthesis prior.

The T2 maps were computed from the reconstructed images
(partial K-space scan) and were compared with the T2 map com-
puted from the ground-truth (full K-space scan). The quantitative
results are shown in Tables 3 and 4.
Different sampling for each weighting

32 48 64

845 0.2707 0.1970 0.1621
723 0.2320 0.1729 0.1422
506 0.2002 0.1484 0.1241

Different sampling for each weighting

32 48 64

374 0.3872 0.2446 0.1548
266 0.2907 0.1539 0.0963
125 0.2443 0.1363 0.0840

Different sampling for each weighting

32 48 64

58 0.3361 0.2350 0.1736
778 0.2648 0.1832 0.1623
667 0.2288 0.1741 0.1437

Different sampling for each weighting

32 48 64

460 0.3899 0.2591 0.1731
388 0.3322 0.1702 0.1037
161 0.2682 0.1510 0.0923



Fig. 5. Ex-vivo data. Top row – ground-truth images, echoes 1, 5, 9 and 13. Next three rows – corresponding difference images from SparseMRI, group-sparse synthesis prior
and group-sparse analysis prior reconstruction.
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3.2. Qualitative evaluation

Even though the NMSE values show significant improvement of
our proposed technique over existing ones, they may not be the
best indicators of image quality. For a qualitative comparison, we
provide the difference images (= original � reconstructed) for the
three different reconstruction techniques for 64 sampling lines.
For each echo a new sampling pattern is used for acquiring K-space
data. For scarcity of space we only show the results for ex-vivo
data. It is not possible to provide all the sixteen images for each
reconstruction algorithm, therefore we only show difference
images for the following echoes – 1, 5, 9 and 13. For better visual
clarity, the intensity of the difference images is magnified five
times.

The difference images (Fig. 5) conclusively establish the superi-
ority of our proposed technique over state-of-the-art CS based
techniques in MR image reconstruction from partially sampled K-
space data for T2 weighted images.

The difference images show how good the reconstruction is
with respect to the ground-truth. However the end-users of MRI
are more interested in the visual quality of the reconstructed im-
age. For this reason, we provide the reconstructed images (Fig. 6)
from the different methods for visual comparison. It is evident that
our proposed method yields the best results.

We assume that if the MR images reconstructed from partial K-
space scans are similar to those from full K-space scans, the corre-
sponding T2 maps will be similar as well. This is a valid assump-
tion. In Fig. 7, we show the T2 maps for the ex-vivo and in-vivo
data. For the in-vivo data, only the portion corresponding to the
spinal cord is fit. As can be seen, the result from our proposed
method is very close to the one obtained from the full K-space
scan.
4. Conclusion

In multi-echo T2 imaging, multiple T2 weighted K-space scans
of the same cross section are obtained by varying the echo time.
The challenge is to reduce the overall scan time. The reduction in
scan time can be achieved by partially sampling the K-space. Thus
from a signal processing perspective, the problem is to reconstruct
the T2 weighted images from their partially sampled K-space data.



Fig. 6. Ex-vivo data. Top row – ground-truth images, echoes 1, 5, 9 and 13. Next three rows – corresponding reconstructed images from SparseMRI, group-sparse synthesis
prior and group-sparse analysis prior reconstruction.

Fig. 7. T2 maps for ex-vivo (top) and in-vivo (bottom) data; from left to right – ground-truth, SparseMRI, group-sparse synthesis prior and group-sparse analysis prior
reconstruction.
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Research in Compressed Sensing (CS) based MR image recon-
struction techniques have shown that it is possible to reconstruct
individual MR images from their partial K-space measurements
fairly accurately by exploiting their spatial correlation (sparsity
of the images in a transform domain). It is possible to apply exist-
ing CS reconstruction techniques to the individual T2 weighted
scans in order to reconstruct the corresponding images separately.
The aforesaid approach does not yield the best possible results.
In this work, we show that instead of reconstructing the images
individually by only exploiting their spatial correlation (transform
domain sparsity) better results can be achieved when further infor-
mation regarding the correlation amongst the different T2
weighted images is utilized as well. This approach gives improved
results when different scanning patterns are used for acquiring K-
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space scans for different T2 weightings. Most commercial scanners
can be programmed to satisfy this condition. However, if the scan-
ner can only acquire data from a fixed sampling pattern our pro-
posed work will not yield significant improvement over standard
CS based methods.

We have shown that the correlation among the different T2
weighted images of the same anatomical cross section can be used
to formulate a group sparsity promoting optimization problem.
Our proposed technique yields significant improvement in the
reconstruction results. We carried out thorough experimentation
on ex-vivo and in-vivo T2 weighted images of a rat’s spinal cord.

The final goal of multi-echo T2 imaging is to compute the T2
map of the anatomical slice. Image reconstruction is the most cru-
cial intermediate step. When the reconstructed MR images are cor-
rect the T2 maps can be computed with high accuracy. In this work,
we have shown this empirically by constructing the T2 maps of ex-
vivo and in-vivo data of rat’s spinal cord from MR images recon-
structed by different CS based techniques.
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